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ABSTRACT

Certain experiments contemplated for space platforms winst he isolared fron:
the accelerations of the platform.  In this paper an optimal active control is
developed for microgravity vibration isolation, using constant state feedback gains
(identical to those obtained from the Lincar Quadratic Regulator [LQR] apprcach)
along with constant feedforward (preview) gains.

The quadratic cost function for this control algorithm effectively weighis
external accelerations of the platform disturbances by a factor proportional to
(l/ul. Low frequency accelerations (less than 50 Hz) are attenuated by eroater
than two orders of magnitude.  The control relies on the absolute position and
velocity feedback of the ex-oriment and the absolute position and velocity
feed—forward of the platform. and  generally  derives  the stability robus:ness
characteristics guaranteed by the LQR approach to optimality.

The method as derived is extendable to the case in which onlyv the relative
positions and veloeities and the absolute accelerations of the experinient and space

platform are available.



. INTRODUCTION

A space platform experiences local, low frequency accelerations (0.01-30 Hzj
due to equipment motions and vibrations, and to crew activity [l]. Certain
experiments, such as the growth of isotropic crystals. require an environment in
which the accelerations amount to only a few micro—g's [2]. Such an environment is
not presently available on manned space platforms.

Since the experiment and space platform centers of gravity do not coincide. a
means is needed to prevent the experiment, {from drifting into its own orbital motion
and into the space platform wall. Additionally, some experiments require umbilicals
to provide power. experiment control. coolant flow, conumunications linkage. or
other services.  Unfortunately. such measures also mean that unwanted platforin
accelerations will he transmitted to the experiments.  This necessiates experiment
isolation. Passive isolators. however, cannot compensate for wmbilical stiffness, nor
can they achieve low cunough corner [requencies even i umbilicals are absent.
Active isolation is therefore essential.

The probleni. then. is to design an active isolation system to minimize these
undesired acceleration transmissions, while achiieving adequate stability margins and
system robustness. Spatial and control energy limitations  must also be

accommodated.
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2. MATHEMATICAL MODEL

The general problem has three translational and three rotational degrees of
freedom. For simplicity, however, this analysis will consider only - the
one—dimensional problem. The general problem could be treated in an analogous
manner. Let the experiment be modeled as a mass m, with position x(t). Assume
that the space station has position d(t), and that umbilicals with stiffness k and
damping ¢ connect the experiment and space station. Suppose [urther rhat a
magnetic actuator applies a control force proportional to the applied current ifr).
with proportionality constant . Such a model is shown in Figure 1.

The system equation of motion is

my + ¢(x=1) + k{x—=d) + 0i =0

Division by m and rearrangement yields

. l\ « . . w . N
X = — —{X — — [ Xx—( c— e 2
X n (x=d) =55 (x=d) =41 (
[n state space notation this hecomes
x=Ax+hu+f{ (3
where
e v )
] l S X B Xy X
\ = = N - = .
= ] X, X = X, X
0 | 0
)\ = I . =
L L
1 1 l m



0

u =1 {=
v s k C
i—ﬁd+md

The objective is to minimize the acceleration x(t).

417



3. OPTIMAL CONTROL PROBLEM
The optimal control problem is that of determining the -ontrol current
n(t) = i which minimizes a suitable performance index

3

J = J(x, u. 1) (1)

x(0) = x (Da
O

Fimx(t) =40 (5

f— o

Another reasonable assumption s that (1) is bounded. and i will be foundd
mathematically advantageous (and only minimally resi victive) 1o assume that [y s

also a dwindling [unction:

i fn) =0 (S

1— X
A guadratic performance index

)

= l,] X Wl‘\; + w.‘u.“] dt, i

has been chosen, as one that lends itself well to the variational approach to opiinal
controls. since an analytical solution is desired. The upper It of the definite
integral has been sclected so as to yield a time—invariant controller. Here Wl s a
square 2x2 constant weighting matrix while Wy is a weighting constant.
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Although, W, could be a [ull 2x2 matrix, for this problem a diagonal form

has been employed for the sake of simplicity.

The performance index consequently reduces 1o

L[ D
1= 0 Vs Y

2 2
X,” Fowal Jdlt

<0 that cach tate is weighted independently.

If sinusoidal motion of the experiment is cousidered. so that

x(1) = B sinwt

and (1) = wox(t), the cost function can be expressed i terms of the acceleration

and control as

X Wy W 2. 3
y= 5T R TUNL

4 ) w I’y

[t is apparent that this perforinance index convenientlv weights acce

frequencies mueh more theat higher [reguencies.
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1. SOLUTION

Finding the optimal control to minimize Eqn. (4) is a variational probiem of
Lagrange, for which the initial steps of the solution are well-known te.g. Llbert
[4]). The variational approach is outlined below, following which the complications
added by the nonliomogeneous term f{t) will be addressed.  Current optimal
controls texts either assume that f(t) = 0 (e.g., [1], p. 262) or require that it have a
restricted range space (e.g., [6], p. 233). The solution that follows provides an
analytical optimal without imposing such restrictions.

The argument. of the cost function J from Eqn. (4) is augmented by the

Lacrange multiplier A times the svstem equation of motion Equ. (3) where

R |
L\.”' /\.,} AN

The resutt J ean be expressed as

. 0
.J:] H s O
Ty

where the Hamiltonian 1 is

H = };(51 Wl X + w:;u“)) + Al (x —Ax —bu=—1{)

N .
[t is desired to obtain an optimal solution u = u  which minimizes J.

The first variation of J(x, u. x) is

- OO0 . . .
M:J() [%ghg+g%bu+% X} du
X dx



which is set equal to zero 10 minimize J. However, integrating by parts,

00 . OO ‘o
J (AL g dn:-[ A6y d
0 ox 0

so that the abyve expression for &) becomes

6 = [(%‘}-A )i + I gujdt = 0 (13)

Both #&x and éu arc arbitrary variations. so &J = 0 ouly if

o0 1 g
T(i_ ,_\_ 514(\}
Jtl

70 =0 14D

The conditions given by Lqu. (5) still apply.

Solving Equs. (11a) and (14D} vields

A=W x-A2Q (15a)

et (150
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x
Temporarily eliminating u produces the result

|
[P
| ===

where
ALyt
EE
A=j—— —— — — —— —
g

Il Bgn. (16) is now solved for A in terms of X and £ Fogue (85b) will then furaish an
4+
expression for the optimal control w .

As noted hefore. optimal control texts generally treat the homogeneous
problem (where (1) = 0), but they do not provide an analytical solution 1o the
nonhomogeneous system deseribed by (5) and (16).  Salukvadze has treat d the
nonhomogencous problem [1,5], but his difficult treatment seems laveely 1o have
remained either uncomprehended or under—appreciated. This e hod is especialls
well=suited to low—lrequency disturbance rejection, and has been applied below o
the present problem.

The homogeneous solution to Eqn. (15), where { = 0, is

X o ox
—:\ IR Y (17
A jh AU
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The four eigenvalues of A may be found to be, in ascending order of real parts.

[ —)31 + (ﬂlz - 4ﬁ2)1/2
“l ==

2

Hy =

4

, g 2 1/2
_[ By - 3= !

2

o |
L i

-

where ,131 and 4, are defined as follows:

)
. 2 a w
2k« Y Wi
) T -
“1 m 2 m w.
m 3
and
2
o w
2 fa k
,32 = ”1 -4 5 + )
m \'&"; 118}

(18¢)

(15d)

(19a)

(19h)

The eigenvectors of A corresponding to the respective cigenvalues y may he chosen

to he
1

Yy

9
7 7 Ny o)

+
% T3 73
v+t oy

L "3
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where T Ty M3 and 7, are defined below:

k .
71 ~Tm (20b)
Yy = — (20c)
2 m =
9
yy = (20d)
3 2 -
m-w,
A=W (20¢]

Using Equs. (18) through (20) with (17) the solution to the homogencous systenn 13

;tll‘ iyt =t b —ftyt
X e ppotee T p, Foge Pyt Ty
= it I fiyt —iyt l —jyt l {21)
A c.e py Fo,e T py Fege D, +Cce 7D
= 1© By, Tty T By, ™% by,

o
with B = { L’kl } k=1, 01 and where Cpo o € are arbitrary constants.
k., ’

Application of the variation of parameters method with terniinal conditions
(Eqgns. 5b.c) leads to the general solution of the non—homogencous systent, with two
constants of integration yet undetermined.

If the two constants of integration are eliminated by solving for A in terms of

x and f, the general solutions for /\l and \,, become:

—/zlt —tyt
A= gEp O e g T (222)
—”‘1" iyl .
Ay = Epx )+ §xy + Eoe + §ge (22h)
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in which the {i's are functions of the eigenvalues and eigenvectors of A, and of the

disturbance f(t).

The Solution Form

Using the fact that

u(t) = —1——1\_Tb [cf. Eqn. (15h)) (23)

w3

the optimal control is found to be

* —ult “l"- —jloyl Jlyt

u () =Xy + X, + 30 [e 1,_,(|)<lt‘ + ¢ “ e~ f_l(t)(lt

(24a)
where
—m k DAL
M zj(m_ﬂlﬂg) (24b)
—m , ¢ o
_m, Loy e L LS >

37 (/L|~/1,.,)(“l TR + m) (21d)
oo m 1 2, ¢ k D1
=" (————-itl_/"))(;t,.z + oyt I—]—]) (21e)

(It should be noted that the feedback gains 1y and ., are those which would
result from applying standard LQR theory to the homogeneous systen equation
x = Ax + bu). In Eqns. (24) py» oy are the eigenvalues of A with negative real

parts, [see Eqns. (18a,b)] and
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fy(t) = LR (24f)

By repeated application of the method of integration by parts. the control may be

re—expressed in terms of an infinite sum:

. o (1" 1, My x (0" 1, My
u (t) = NXyp+ Xy +oig = .| + 1y 2 T
r=0 I r=40 it
(23)
Rewriting £, in terms of d and d. the control function hecomes
TR . ko
wy = yxit) + 1,x(t) + [m(ﬁI + /-l;)] d(t)
r—I . oo 7] _— n. 1 |,
R P e B G ik 30 Tt
+ X0 g )+ C R R )
1= 1y Iy 1 1y
A "
I U G 1 {n) Cher ardor fore
+ [(-1) =t )} V() + higher order terms
g Ky .
(26)
This may be written in a more appealing forn as
u (t) = (‘p x(1) + Cy X(t) + 40 d(t) + Cd d(t) + higher order terms
(27

in which the constant coefficients ('p‘ o o and ¢y may be defined from Fgns
(24) and (26). Clearly. il the infinite smins converge rapidly enough, the optimal

control can be approximated hy



[R5
o

u*(t,) =t x(t) + ¢, x(t) + €40 d(t) + ¢y d(t) (:
For very low frequency disturbances the higher order terms in Fan. (26) are
negligibly small, and the control (Eqn. (28)) closely approximates the optimal. If.
in fact, the second— and higher—order derivatives of d(t) are identically zero. the
approximation is exact. It can he shown that for the critically damped closed loop
svstem the cigenvalues are real and cqual. and that the convergence s more rapid
than for the overdamped system. Further, as the closed—loop system eigenvalues

beconie more negative the convergence speed goes up as well.
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5. CONTROL EVALUATION

Phvsical Realizability of the Control

The control, Eqn. (25), is physically realizable. if the states and sufficien’
derivatives of d(t) are accessible (or estimable by an observer), and if the highet
order terms are negligible. It is not necessary that the eigenvalues be real. although
the proof of this requires a more general linear—algebra or state—t ransition—tnatrix
approach.

If values are assigned to the systeni parameters, associated controller gains
can be evaluated. Suppose that m = 100 Ibm, k = 0.3 Ibf/ft, ¢ = 0 Ibf—sec/f1. and
a = 10 Ibf/Amp. With wa arbitrarily set at 1 and Wi vari «. associated integer
values of W, Can be found below which the eigenvalues 1 and 1 will alwavs he
real. Such values are tabulated in Table 1. Stated otherwise. the tabulated values
of the weights LI and Wy, are those integer values (for the sake of simpliciiy) for
which the closed loop system is closest to being critically dannped without being
underdamped.  Corresponding controller feedback and feed—torward gains (for the
first five derivatives) are also included.

il)

. )
The states x(1) and x{t) and the derivatives d(”)(!‘). Jd and (I("/H are

clearly available for an carth=based svstem. Howevers i space. the onlv absolure
measurements which can be directly available are %(1) and d(t). rom whicl xir).
A(t) and x(t), d(t) are obtainable only by successive integration(s). Rearrangement
of {28) into

e

u (1) = (('p + o)X+ e+ r(“)&(t) —<'d[)[x(t'1 —d(t ] e ki = di)]

(26

or



ohviates the need for one accelerometer, but one accelerometer phis two integrations
remain necessary for either the platform or the experiment. Since ()=t 1] (or
one of its integrals) has not been weighted in the performance index J. experiment
drift will be a problem that must be corrected either by another control loop or by a
change of system states. The latter could be accomplished by incorporating an
accelerometer attached to the experiment into the state equation. Alternatively.
one could append an integrator to the plant, include the current i(t) as a third state.
and optimize the control difdt. But for the sake of simplicity (i.c.. fewer states) the
former has been assumed (without development) in this paper.

The higher order terms of the control [Equs. (25) and 26)] can be neglected.
for low frequencies. if the eigenvalues j, and g AT® of sutficient modulus. These
cigenvalues, in turn, are under the control of the dedigner, determined by his chotee

x

Wiy and W It is apparent from qn. (23) that u (1) cssentially

of weights w, .,
o la

reduces to 1wo alternating power series. For a sinusoidal disturbance of frequency <

the series form of the control converges for Iw/uil < 1 (i =1.2). I can be shown
C

. . . \ o2t .. .
that each alternating power Serics COnverges like ¥ (1) (ﬁt) . With low"
r=1{}

froquency  disturbances (i.e., small relative to system closed loop cizenvaliues a
control formed by series truncation very closely approximates the optimal.

For example, suppose that the normalized frequencies 1;///.13 for o sinnsoidad
disturbance are less than 1/5, and that only the feedforward control terms ('”Udt: )
and ('dl(l(t) are included with the feedback terms. Even so. the feedlorward portion
of the truncated control, at any time t. will bea current that is still within 4 0 fie..
(1/5)2 of the feedforward portion ol the actnal optimal. IF the normalized
frequencies are below 1/10, this approximation crror will be less than 1/, Table 1
shows that the gains Cdi of higher order derivatives dm(t) [see Eqn. (26) for

algebraic representations) are, in fact, quite smatl.

A e .
i i *rhe o -
qu‘-y- .&’n\. Yol tanl LN

NN W s
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In some circumstances there may be design constraints which prevent the
designer from selecting weights that will lead to sufficiently rapid convergence.
However, since convergence occurs rapidlv even for eigenvalues of relatively small
modulus (|w/p} < 1/3). in a great many cases the designer will have much
latitude in his choice of weights. For "low" frequency disturbances, in these cases, a
control which includes only one or two feedforward terms will be "close" 1o the
optimal. These frequencies will be well-attenuated.

Higher frequency disturbances will also be well-attenuated. provided the
input—to—output transfer function(s) are at least strictly proper in the Laplace
Transform variable s, This will not be the case for the present problen if more than
three feedforward gains (‘A(IO‘ 41 € o) are included in the control. Practicaliv. ihis
means that only proportional and first— derivative feedforward [Eqn. (25) with v =
0.1 or Eqn. (26) with n = 2] should be added to the feedback control terns. As will
he seen shortly, however, adding even the proportional feedlorward termi(x) can
dramatically improve the disturbance rejection over that afforded by LQR feedback

alone.

Transfer Function and Block Diagram

Neglecting the higher order terms, the transfer function between input and

out put accelerations or displacements is

: T S
if.\(h‘) _XS)_FTD_((lI)B +__(l—l “ao! ) 31
S PETIE s e B o
S o v v/ 7 D

and a block diagram of the controlled system can be drawn as in Figure 2.



Control Stability, Stability Robustness, and General Robustness

Since the control feedback gains are the same as those obtained by solution of
the standard Linear Quadratic Regulator (LQR) problem, the closed loop system is
stable and enjoys the stability robustness characteristics guaranteed by the (LQR)
approach to optimality, viz., a minimum of 60° phase margin, infinite positive gain
margin, and 6 dB negative gain margin [6]. Additionally, numerical checks indicate
that it enjoys substantial insensitivity, or general robustness to uncertainties in k, ¢.
and m, as indicated by Table 2 and Figures 3 through 10. By comparing the Bode
plots of Figures 3. 5, 7, and 9 (corresponding to controls using hoth LQR F/B and
proportional F/F) with those of Figures 4, 6, 3, and 10, respectively (corresponding
to controls using LQR F/B only), one can sec that adding fecd—forward
substantially improves disturbance rejection at low {requencies. For example a
comparison of Figures 3 with Figure 1 indicates that the optimal control method
described above can lead to acceleration reductions of greater than four orders of
magnitude for all frequencies. This reduction is more than two orders of magnitude
below that afforded by LQR feedback alone at the lower frequencies, i.e.. those most
heavily weighted in the performance index.

The order of the reduction is eventually limited by control cost. of course.
probably in terms either of actuator—related limitations (such as heat—removal or
force—gencration requirements) or of power limitations (especially in a space—station
environment). The control also leads to displacement reductions of the same
magnitude, limited in this case by actuator—stroke or spatial limitations. Providing
a unit transmissibility for very low frequencies and weighting (x—d) and/or [{x—d)
in the performance index J would be steps toward addressing these latter

limitations.
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Computational Aspects

A significant amount of algebra was required to solve the two—state problem
of this paper, and the labor involved increases dramatically with each additional
state. However, such symbolic manipulators as MACSYMA may be used to ease
the workload if a symbolic solution is desired. Further, well-known numerical
methods exist (i.e., Potter's method [7] or Laub's method [8]) for solving the
solution to the homogeneous system. These can readily provide the feedback gains
in numerical form, even for problems with many states. It might be anticipated.
then, that a numerical method also exists for finding the desire | feed—forward zains.

Such is the case, as will be shown in a later paper.
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6. CONCLUSIONS

This paper has applied an existing method for obtaining an optimal control
to the microgravity platform isolation problem, for which the disturbances to be
rejected are low—frequency accelerations. The system was assumed to be

representable in the form x=Ax+ bu+ f with quadratic cost function

00
J= %J (;gT Wix + w3u2)dt and diagonal weighting matrix Wl' The resultant

0
control law was found to be simple, stable, robust, and physically realizable.

<

Further it was shown to have excellent acceleration— and displacement—attenuation
characteristics, and to be frequency—weighted toward the low end of the acceleration
spectrim.

The method is extendable to the case for which only relative positions and
velocities. and absolute accelerations, are available; and can bhe applied 50 as to
weight relative displacements in the performance index.

The approach as presented s algebraically intensive, but symbolic
manipulators can be used to ease the algebraic .abors. Further. since the method
produces feedback gains identical to those obtained by the LQR approach to
optimality, numerical computation of those gains is casily accomplished. even for
large systems.  The feed—forward gains can be found numerically with comparable

ease.
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Table . Optimal F/F and F/B Gains for Selected Srate
Variable and Control Weightings.

Svstem Parameters:

m = 100 lbm k = 0.3 1bf/ft
¢ = 0.000622 lbf-sec/ft (¢ = 0.1%)
o = 10 1bf/amp
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{25911 } 100 1t 1609389 | 11 LT l 0000 (LML E a0l ‘ ) KD 1‘ ). 0000 | RINI l
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Figure 2. Block Diagram
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Table 2. Closed loop transfer functions for system with design
parameter values of k = 0.3, ¢ = 0.000622. and m = 100; but
with actual parameter values as shown. Gl., 63. (5. and 67
include both LQR F/B and proportional F/F: G2, G4, (6. and G3
include LQR F/B alone. Weighting parameters used were
Wig T 2583, Wip T 10, Wq = 1 (see Table 1.

System Parameters Closed Loop Transfer Function ;
) o (B a (1o e
.
0.3 0.00062° {00 Gl(s) = —0:00006225 + 0.0001 !
(¢=0.1%) 0.310565°+4.4675=+16.0621

0.3 0000622 100 62(s) = (.0000622s + 0.0300

0.3105652+4 . 16755+ 16. 00 1

0.310568°+4.46753+16.077 1

0.0000622s + 0.0430

0.15 0.000622 100 Gi(s) = 3 -
0.3105687+4.4673=+16.077 1
0 000622 00 G3(s) - 0006225 ¢ 0.0001
0.310565%+4. 16805+16.0624 |
03 000622 100 i) = 00006225+ 0.0300
0.310565%+1. 46305160621
3225 5 |
.45 0.00622 90 (7(s) = —0-0006225 + 0.0051
0.279308" +4. 10305+ 16,077 |
DD -
015 0.00622 90 (8(s) = —— 2006225 = V.00

D)
0.27950s"+ 1. lox0=+16.07 74
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x*
* x*
X
[\ \ 9
—1 |
X , %
Experiment Compartment
* x

Umbilical Connection

Scientific Experiment in Spacecraft
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K DISTURBANCE LEVELS

\

Quasi-Steady or ‘DC" Accelerations

Relative Gravity Frequency (Hz) Source
1E-7 0 to 1E-3 Aerodynamic Drag
1E-8 0 to 1E-3 Light Pressure
1E-7 0 to 1E-3 Gravity Gradient

Periodic Accelerations

Relativ ravi Frequency (Hz) Source
2E-2 g Thruster Fire
(orbital)
2E-3 5 to 20 Crew Motion
2E-4 17 Ku Band Antenna

Non-Periodic Accelerations

Relative Gravity Frequency (Hz) Source
1E-4 1 Thruster Fire
(Attitudinal)
1E-4 1 Crew Push-0Off

=/
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2 A

general PI"OBIQE :

In the upcoming space
station, planned by NASA
for complefion in the 19905,

minimize the low 'Freguencg

_clccelera +tions transmitted

from the space station toan

experimental platform contained
on (inside) the space station,

“minimize”: reduce to ~ IO.6 ;/
L) . 3’
¥ possible

“©&Iow 'Freq.ucncy": o.oo1 to 20 Hz

- <
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Magnetic
Support Experiment  Magnetic

Lorentz Mass
Actuator Support

Concrete Base

Control Law Validation Apparatus
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/

X X X X _ X X X X X _X X X X
p i

X X X 1><T X X X X l><L>< X X

-4+— F — F

X X xfi X X X xf if‘ X X
—

Xx X X X X X X X X X X X X

The Lorentz Equation: F=il X B
F = Force © "1 = length of wire i = current

% Represents the tail feathers of a magnetic field B vector into the page
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2 R

Lorentz Actuator
Design

Section A-A
Large

p E Air Gap
A
Copper
Coil t Magnet

L.JHHHW ]IW/ oo
R
ae W Seeve  NXS A / /
___\ Cor;;;:lccting agne ron

Shaker . . .
Cross-sectional View of Actuator
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Shaker 11 m

Confrd“‘l‘

3 d(t) > x (1)

System Model
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3 B

Objective:

Find the “best” i (4),

to minimize x(t).
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S A

Egua'tion of Motion:

i@ = & [x0)-dit)]
& [-de)-2 i
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K

;aJ{:;i

o
x=Ax +bu +f
where 5:("'
X2

A=[.‘i !

eof2)

I A

t-{7}

State Eg uations:
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g A

Problem Statement:

Determine the control ult)

which minimizes the performance

5 ,
Forl the system
x=Ax+B8u~+f
subject to the conditions

x (o) = %,

lim x(t)=

¢ =» 00

[imm f('ﬂ: °

P , o JU——
10
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/Soluh’on Method (Differential \
Equations Approach) :

I Ausmen": the performance index J
with the state equations using

Laaranse mulf‘ipliers.
2. Take the 3t variation SJ of the

ausmen't'e.d performance index J and
set it equal to zero:

§T= f[ Sx + 34 5u v 2 gideno

where = 'L( W, x +ud’ Wu)-o-k(zs-Ax-Bu 'F)

3 In-teara'l'e the third term of the m'{'e.grand
by parts, com bine terms, and set coefficients
of the arbrtrary varna‘hons §x and §u

equal to zero.
Result: A= W, x-A A
u= W' 872
4, Substitute for u in the state equations,
to yield

HE MRS HEN

\_ /

458
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r The so[u't;oh (i.e., the ep'ﬂmal control u =gm

Is now g*: W;‘BTL where A is found by

solving the system
5} A BW;'B”
T) = +
A lw, -AT

subjeet to
x (0) = X,

lim x(#)= ¢
+ > o0

L+ en f_('t)-’-' o

t-»oo

Find the solution of the homoseneous system,

NI

Use the vartation of parame'te.rs method
to find the 3¢.nera| solution of the
nonhomogeneous system, e of

AL

1. Apply the terminal conditions on _35(1‘), to
conclude that n of the 2n arbitrary
constants in the ge.ne.ral solutien are
equal to zero.

- _

459
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( 8. Solve for A(X) in terms of x(t) in a mannes\

such that the rgmainfns n arbitrary
constants are eliminated.

9. Use the equatien
.".!*" W;'BTA
te find u® in terms of x.

Result:
u™(t) = (ws-l B"X,, xu-') X
+ (W;' BTX::"') LAY P X::)f(t) dt

where A O is the Jordan
0 -A

Canonical Form of the Hamiltonion
matrix (A BW'87]
W, -AT

where A contains only the neqative
eigenvalues of +the Hamiltonian
matrix, cerrespoending to the
)
eisenvalues of the closed-lesp
SYS'('C.M (assuming {A, B}confro"ab!e))
where X=[xa xu] is the cisenvec_‘t‘or
Xa Xaa
matrix which leads to the

K abeve J. C.F.) /
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- (=1)
f where X™'= lx“ Xu J, \

) (&)
xtl x 22

and Wwhere m'tegra'hon of the indefinite
integral requires constants

of m'l‘e.gra'hon that are all
fde.n‘tic.a"y zero,

10, Infcsra'ﬁus repeatedly by parts and using
the facts that
XNK e X A XS = R= A-BWSBTP
where P= - XuX;' [P is the solution te the

well- known Mgebranc
Riceatt Eq‘ua'taon],

develop equivalent forms for u*(¢):

-1

u*(t) = -W; ‘g’ Px + W-'B XM ' "‘*fe"*X f)dt

= -W'BTP x - W'BTX” 5 (-A")'“x“"f"’

rao

=-W'B"P % - W;'B7 z( ) "*'pg
r=0
= "‘W-'B P X - W-‘B X-.-r Zo("/\ ‘r)r-o-t 'r (r)

Note: A state transition matrix approach ynelds

) = ~W; BTP x -W'BTX e e"*x“‘ma?

\_ /
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s ™

Solution:
u*(t) = -W;'B'P x + W;'B’x;;""e"‘*Ie"*x;}"fmat

-t T | “l pT =1 _Ae .~ AT y(=0
=-W;BPx-W/ B X, e {e Xz‘ f(rdr

= W BTPx - Wy BTXS T (AT XS

reo
=-W'B"Px- W;'B" 3 (-A"")""'p ¢
- . w;s BTP x - W;l BT xl-"\'r'io (_A-z)""" x:" f(r)

Drepping higher order terms (for r>o0):
CGE) = -W]'B P x + W, BTXS AT X £
- - W'BTP x + W BTX AT XPE

= -W'B"Px + W'BXTATX, P

- -W;'B"Px + W'B"X;T AT X, €

“G¥H = - W;'BTP x + W;'BTATPE
= - 3 -
where A™T= -P(PA+W,) 's (A-Bw3 BTP)
= (X“ A x;.)-T = X::)-'/\" Xz‘;n

These are several forms for the control law,

o /

162
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s )

“O5*6)=(-W;'BTP) x(t)
+(W;'BRTP) £ (o)
where A=A-BW,'B"P
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a ~
Agglicaﬁon to our
specific problem:
t{t)= Cox(¥) + C x(¢)
+Cd°d(ﬂ +Cd'&(f)

where Cp, C,, Cdo,and Cq,

are constant 3ains.
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s A

Fm—
|
|

s* D . | Des)

| sT |

I
' % X(s) , | 57X
: Plant S p—>
!
|
|
o s
f
I
]
J
Lo o o e e e e ——

Block D]asram
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System Parameters:

Table |

Variable and Control Weightings.

Optimal F/F and F/B Gains for Selected State

m = 100 lbm k = 0.3 1bf/ft
¢ = 0.000622 1bf-sec/ft (¢ = 0.17%)
a = 10 1bf/amp
—
Weights F/B Gains F/F Gains
Yia | Vi | ¥ » ¢y ‘40 Cq1 02 C3 Ciy Cys
2 1 1.3845 | 1.3637 | 0.0294 | —0.0006 | 0.0070 | —0.0067 | —0.0049 | <.0032
| 2 3.1324 | 1.9863 {| 0.0207 | 0.0001 | -0.0030 | —0.0019 | -0.0009 | —0.0004
21 31 4.7659 | 2.4413 || 0.0298 | -0.0000 | -0.0020 | -0.0010 | 0.0004 | -0.0001
a1 41 6.3732 | 2.8210 | 0.0299 | 0.0000 | -0.0015 | —0.0007 | -0.0002 | -0.0001
64 5|1 7.9701 [ 3.1544 | 0.0299 | 0.0000 | -0.0012 | —0.0005 | -0.0001 | -0.0000
921 61 9.5617 | 3.4552 | 0.0299 | 0.0000 | —0.0010 | 0.0004 | -0.0001 | -0.0000
(o1 711 PE1950 [ 3.7354 | 0.0299 | 0.0000 | -0.0008 | —0.0003 | -0.0001 | —0.0000
[o6s | w1 PZLRIS3 [ 39949 | 0.0299 | 0.0000 | -0.0007 | —0.0002 | -0.0001 | —0.0000
0 | 9| 14269 102850 1 0.0299 | 0.0000 | -0.0006 | —0.0002 | 0.0000 | 40000
258 1 10| 1 16,0824 | 4.4674 | 0.0299 | 0.0000 | —0.0006 | -0.0002 | —0.0000 | -0.0000
S50 | 15 | 240740 f 5.4729 1 0.0300 | 0.0001 | —0.0004 | ~0.0001 | —0.0000 | —0.0000
s |20 |1 BLRO L6200 1 0.0300 | 0.0000 | —0.0003 | -0.0001 | —0.0000 | -0.0000 :
1617 | 25 | 10,1819 | 7.0680 || 0.0300 | 0.0001 | -0.0002 | —0.0000 | ~.0000 | - 0000
2329 1 30 | 1 2297 | 77000300 | 0.0001 | 0.0002 | <0.0000 | -0 0000 | <0 0000
M oas | 562816 | 83640 | 00300 | 0.0001 | -0.0002 | <0000 | ~0.0000 | ©.0000
A o0 | G361 | 89420 | 00300 | 0.0001 | 9.0001 | <0.0000 { 0.0000 | 00000
9825 | 60 | 1 96.5360 | 10.9526 | 0.0300 | 0.0001 | 0.0001 | -0.0000 | -0.0000 | —.0000
16581 | 80 | 1 1287372 | 12,6475 [ 0.0300 | 0.0001 | -0.0001 | 0.0000 | -0.0000 | —0.0000
25911 100 | 1 f| 1609389 |4‘:4o7J 0.0300 | 0.0001 | —0.0001 | —0.0000 | <0 0000 | —0.0000
IR S [T VNSNS | S G e o |
466
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s N

Table 2. Closed loop transfer functions for system with design
parameter values of k = 0.3, ¢ = 0.000622, and m = 100; but
with actual parameter values as shown. G1, G3, G5. and G7
nclude both LQR F/B and proportional F/F. G2, G4, G6, and G3
include LQR F/B alone. Weighting parameters used were
Wig T 258, Wip = 10, Wy = 1 (see Table 1).

System Parameters Closed Loop Transfer Function
1bf Ibf-sec s°X(s ‘
ki) (o) m b 52D (5) |
0.3 0.000622 100 Gi(s) = —2-00006235 + D.00OL -
(c=0.1%) 0.310565%+4. 46755+16. 0624
0.3 0.000622 100 G2(s) = — 00006225 + 0.0300

0.3105652+4.46755+16.O6244j

0.45  0.000622 100 G3(s) = 0'00036225 + 0.0151

0.310565°+4.46755+16.0774 |

0.0000622s + 0.0430

0.45  0.000622 100 G4(s) = Y
0 3105652+4.46755+16.0774
0.310565%+4.46805+16.0624
0.3 0.00622 100 Go(s) = ——:0006225 + 0.0N00
0.310565°+1.16%05+16.0621 |
. 3223+ 3
0.45  ).00622 90 (7(s) = —0-000622s » 0.0DL
0279505 +4. 16305+16.077 1
0.45  1.00622 90 (3(s) = — 20006225 » DO
0270505 +4.46805+16.0771 |

\_ J
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4 A

Conclusions:

. An oP'Hmal control has been determined

for the nankomosencous LQR Problem.

2. An aPProxt'ma'tion to this oP'l'imai control
has been found which uses constant
feedback and feedforward sa;ns.

3. The ap‘l‘;mal control has the 'Fo“ow;ns

advan‘l‘ases:
a. The sains can be eas”y determined,

b. The control 1s very robust (GO°pkqsg
\'vm:u"s;mJ infinmite posi‘h've. 5qn'n m°"3;")
6 dB nega't;ve. sa;n mqrsl'n).

c. The control is aFP[;caHe to a wide
range of problems,

d. The coentrol offers substantial .
improvemen'l' in disturbance re.je.c't'non

over that afferded by LQR feedback

alene.

e. The centrol can be easily ;mPlcmenfe.d.

\_ /
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